🧮 Solving Advanced Trigonometric Equations

Complex trigonometric equations require systematic solution strategies combining algebraic and trigonometric techniques.

Solution Methods

  1. Linear Form: asinx + bcosx = c
    Convert to Rsin(x + α) where R = √(a² + b²)
  2. Quadratic Form: Use substitution (u = sinx)
  3. Multiple Angles: Apply double-angle identities

Equation Solution

Solve: 2sin²x - 3sinx + 1 = 0
Let u = sinx → 2u² - 3u + 1 = 0
Solutions: u=1 ⇒ x=π/2 + 2πn
u=½ ⇒ x=π/6 + 2πn or 5π/6 + 2πn

Special Cases

BLOGS HOME